PUBLICATIONS

Miller, C.L.W., Warner, J.L., and Winston, F.M. Insights into Spt6: a shitone chaperone that functions in transcription, DNA replication, and genome stability. Trends Genet. 2023 DOI: 10.1016/j.tig.2023.06.008  

Miller, C.L.W. and Winston, F.M. The conserved histone chaperone Spt6 is strongly required for DNA replication and genome stability. Cell Reports, 2023 Mar 28;42(3):112264. DOI: 10.1016/j.celrep.2023.112264

López-Rivera, F., Chuang, J., Spatt, D., Gopalakrishnan, R., and Winston, F.M. Suppressor mutations that make the essential transcription factor Spn1/Iws1 dispensable in Saccharomyces cerevisiae.  Genetics, 222, 2022. doi:10.1093/genetics/iyac125.

Gopalakrishnan, R. and Winston, F.M. The histone chaperone Spt6 is required for normal recruitment of the capping enzyme Abd1 to transcribed regions. J. Biol. Chem. 2021. 297, doi: 10.1016/j.jbc.2021.101205.

Viktorovskaya O., Chuang J., Jain D., Reim N.I., Lopez-Rivera F., Murawska, M., Spatt D., Churchman S., Park P.J., Winston F.M. Essential histone chaperones collaborate to regulate transcription and chromatin integrity. Genes & Development. 2021 May 03; 35:(698-712).
PMID: 33888559
PDF

Grant, P.A., Winston, F.M., and Berger S.L. The biochemical and genetic discovery of the SAGA complexBiochim Biophys Acta Gene Regul Mech. 2020 Dec 15:194669. DOI: 10.1016/j.bbagrm.2020.194669.

Formosa, T. and Winston, F.M. The role of FACT in managing chromatin: disruption, assembly, or repair? Nucleic Acids Research 48, 2020. 11929-11941. DOI: 10.1093/nar/gkaa912.

Reim R.I., Chuang J., Darawal J., Alver B.H., Park P.J., Winston F.M. The conserved elongation factor Spn1 is required for normal transcription, histone modifications, and splicing in Saccharomyces cerevisiae. Nucleic Acids Res. 2020 Sept 17; Online ahead of print
PMID:  32941642
PDF

Gopalakrishnan R., Marr S.K., Kingston R.E., Winston F.M. A conserved genetic interaction between Spt6 and Set2 regulates H3K36 methylation. Nucleic Acids Res. 2019 May 7; 47(8):3888-3903.
PMID:  30793188
PDF

Doris S.M., Chuang J., Viktorovskaya O., Murawska M., Spatt D., Churchman L.S., Winston F.M. Spt6 Is Required for the Fidelity of Promoter Selection. Molecular Cell. 2018 November; 72(4): 687-699.
PMID:  30318445                       PMCID:   PMC6239972
PDF

Shetty A., Kallgren S.P., Demel C., Maier K.C., Spatt D., Alver B.H., Cramer, P., Park P.J., Winston F.M. Spt5 Plays Vital Roles in the Control of Sense and Antisense Transcription Elongation. Molecular Cell. 2017 March; 66: 77-88.
PMID:  28366642                       PMCID:  PMC5394798
PDF

Reavy C.T., Hickman M.J., Dobi K.C., Winston F.M. Analysis of Polygenic Mutants Suggests a Role for Mediator in Regulating Transcriptional Activation Distance in Saccharomyces cerevisiae. Genetics. 2015 October; 201: 599-612.
PMID: 17526727                       PMCID: PMC1952096
PDF

DeGennaro C.M., Alver B.H., Marguerat S., Stepanova E., Davis C.P., Bähler J., Park P.J., Winston F.M. Spt6 regulates intragenic and antisense transcription, nucleosome positioning, and histone modifications genome-wide in fission yeast. Mol Cell Biol. 2013 Dec; 33(24): 4779-4792.
PMID: 24100010                       PMCID: PMC3889546
PDF

Neumuller R.A., Gross T., Samsonova A.A., Venayagam A., Buckner M., Founk K., Hu Y., Sharifpoor S., Rosebrock A.P., Andrews B., Winston F.M., and Perrimon N. Conserved regulators of nucleolar size revealed by global phenotypic analyses. Sci Signal. 2013 August; 6(289):ra70.
PMID: 23962978                       PMCID:  PMC3964804
PDF

Chang J., and Winston F.M. Cell-Cycle Perturbations Suppress the Slow-Growth Defect of spt10∆ Mutants in Saccharomyces cerevisiae. Genes, Genomes and Genetics. 2013 March; 3(3):573-83.
PMID: 23450643                       PMCID:  PMC3583463
PDF

Ahn S., Spatt D., Winston F.M. The Schizosaccharomyces pombe inv1+ Regulatory Region Is Unusually Large and Contains Redundant cis-Acting Elements That Function in a SAGA- and Swi/Snf-Dependent Fashion. Eukaryot Cell. 2012 June; 11(8): 1067-1074.
PMID: 22707486                       PMCID:  PMC3416058
PDF

Kiely C., Marguerat S., Garcia J.F., Madhani H.D., Bähler J., Winston F.M. Spt6 is required for heterochromatic silencing in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol. 2011 August; 31: 4193-4204.
PMID: 21844224                        PMCID:  PMC3187285
PDF

Kloimwieder A. and Winston F.M. A screen for germination mutants in Saccharomyces cerevisiae. G3: Genes, Genomes, Genetics. 2011; 1(2):143-149.
PMID: 22384326                        PMCID:  PMC3276131
PDF

Helmlinger D., Marguerat S., Villén J., Swaney D.L., Gygi S.P., Bähler, J., and Winston, F.M. Tra1 has specific regulatory roles, rather than global functions, within the SAGA coactivator complex. EMBO J., 2011 June; 30(14):2843-2852.
PMID: 21642955                        PMCID: PMC3160243
PDF

Hickman, M.J., Spatt, D., and Winston, F.M. The Hog1 mitogen-activated protein kinase mediates a hypoxic response in Saccharomyces cerevisiae. Genetics.  2011; 188(2):325-338.
PMID: 21467572                        PMCID: PMC3122313
PDF

Ivanovska I., Jacques P.E., Rando O.J., Robert F., Winston F.M. Control of chromatin structure by Spt6: different consequences in coding and regulatory regions. Mol Cell Biol. 2011;  31(3):531-54.
PMID: 21098123                        PMCID: PMC3028613
PDF

Chang J.S., Winston F.M. Spt10 and Spt21 are required for transcriptional silencing in Saccharomyces cerevisiae. Eukaryotic Cell. 2011; 10(1):118-129. PMID: 21057056                        PMCID: PMC3019801
PDF

Diebold M.L., Koch M., Loeliger E., Cura V., Winston F.M., Cavarelli J., Romier C. The structure of an Iws1/Spt6 complex reveals an interaction domain conserved in TFIIS, Elongin A and Med26. EMBO. 2010; 29: 3979 – 3991.
PMID: 21057455                        PMCID: PMC3020637
PDF

Diebold M.L., Loeliger E., Koch M., Winston F.M., Cavarelli J., Romier C. Noncanonical tandem SH2 enables interaction of elongation factor Spt6 with RNA polymerase II. J Biol Chem. 2010; 285(49):38389-38398.
PMID: 20926373                        PMCID: PMC2992272
PDF

Libuda D. and Winston F.M. Alterations in DNA replication and histone levels promote histone gene amplification in Saccharomyces cerevisiae. Genetics. 2010; 184(4):985-997.
PMID: 20139344                        PMCID: PMC2865932
PDF

Helmlinger D., Marguerat S., Villén J., Gygi S.P., Bähler J., and Winston F.M. The S. pombe SAGA complex controls the switch from proliferation to sexual differentiation through the opposing roles of its subunits Gcn5 and Spt8. Genes Dev. 2008; 22: 3184-3195.
PMID: 19056896                        PMCID: PMC2593614
PDF

Cheung V., Chua G., Batada N.N., Landry C.R., Michnick S.W., Hughes T.R., and Winston, F.M. 2008. Chromatin- and Transcription-Related Factors Repress Transcription from within Coding Regions throughout the Saccharomyces cerevisiae Genome. PLoS Biol. 2008; 6: e277.
PMID: 18998772                        PMCID: PMC2581627
PDF

Monahan B.J., Villén J., Marguerat S., Bähler J., Gygi S.P., and Winston F.M. Fission yeast SWI/SNF and RSC complexes show compositional and functional differences from budding yeast. Nat Struct Mol Biol. 2008; 15, 873-880.
PMID: 18622392                        PMCID: PMC2559950
PDF

Zhang L., Fletcher A.G., Cheung V., Winston F.M., Stargell, L.A. Spn1 regulates the recruitment of Spt6 and the Swi/Snf complex during transcriptional activation by RNA polymerase II. Mol Cell Biol. 2008 Feb; 28(4):1393-1403.
PMID: 18086892                        PMCID: PMC2258746
PDF

Laprade, L., Rose, D., and Winston, F.M. Characterization of new Spt3 and TBP mutants of Saccharomyces cerevisiae: Spt3-TBP allele-specific interactions and bypass of Spt8. Genetics. 2007; 177: 2007-2017.
PMID: 18073420                        PMCID: PMC2219495
PDF

Hickman, M.J. and Winston, F.M. Heme levels switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor. Mol. Cell. Biol. 2007; 27, 7414-7424.
PMID: 17785431                        PMCID: PMC2169065
PDF

Duina, A.A., Rufiange, A., Bracey, J., Hall, J., Nourani, A., and Winston, F.M. Evidence that the localization of the elongation factor Spt16 across transcribed genes is dependent upon histone H3 integrity in Saccharomyces cerevisiae. Genetics. 2007; 177(1):101-112.
PMID: 17603125                        PMCID: PMC2013732
PDF

Dobi, K.C., and Winston, F.M. Analysis of Transcriptional Activation at a Distance in Saccharomyces cerevisiae. Mol. Cell. Biol. 2007; 27: 5575-5586.
PMID: 17526727                        PMCID: PMC1952096
PDF

Libuda, D.E., and Winston, F. Amplification of histone genes by circular chromosome formation in Saccharomyces cerevisiae. Nature. 2006; 443, 1003-1007.
PMID: 17066037                        PMCID: PMC3365550
PDF

Nourani, A., Robert, F., and Winston, F.M. Evidence that Spt2/Sin1, and HMG-like factor, plays roles in transcription elongation, chromatin structure, and genome stability in S. cerevisiae. Mol. Cell. Biol. 2006; 26, 1496-1509. PMID: 16449659                        PMCID: PMC1367203
PDF

Martens, J.A., Wu, P.-Y.J., and Winston, F.M. Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae. Genes & Dev. 2005; 19, 2695-2704.
PMID: 16291644                        PMCID: PMC1283962
PDF

Prather, D.M., Krogran, N.J., Emili, A., Greenblatt, J.F., and Winston, F.M. Identification and characterization of Elf1, a conserved transcription elongation factor in S. cerevisiae. Mol. Cell. Biol. 2005; 25, 10122-10135.
PMID:16260625                        PMCID: PMC1280281
PDF

Prather, D.M., Larschan, E., and Winston, F.M. Evidence that the elongation factor TFIIS plays a role in transcription initiation at GAL1 in S. cerevisiae. Mol. Cell. Biol. 2005; 25, 2650-2659.
PMID: 15767671                        PMCID: PMC1061654
PDF

Hess, D. and Winston, F.M. Evidence that Spt10 and Spt21 of S. cerevisiae play distinct roles in vivo and functionally interact with MBF, SBF, and Snf1. Genetics. 2005; 170, 87-94.
PMID: 15744051                        PMCID: PMC1449726
PDF

Larschan E. and Winston F.M. The Saccharomyces cerevisiae Srb8-Srb11 complex functions with the SAGA complex during Gal4-activated transcription. Mol Cell Biol. 2005;  25:114-23.
PMID: 15601835                        PMCID: PMC538787
PDF

Kaplan, C. D., Holland, M. J., Winston, F. 2005. Interaction between transcription elongation factors and mRNA 3′-end formation at the Saccharomyces cerevisiae GAL10-GAL7 locus. J. Biol. Chem. 2005; 14;280(2):913-922.
PMID: 15531585
PDF

Dror, V. and Winston, F. The Swi/Snf chromatin remodeling complex is required for rDNA and telomeric silencing in Saccharomyces cerevisiae. Mol. Cell. Biol.  2004;  24: 8227-8235.
PMID: 15340082                        PMCID: PMC515061
PDF

Wu. P.-Y. J., Ruhlman, C., Winston, F., and Schultz, P. Molecular architecture of the S. cerevisiae SAGA complex. Mol. Cell. 2004; 15: 199-208.
PMID: 15260971
PDF

Martens, J.A., Laprade, L., and Winston, F. 2004. Intergenic transcription is required to repress the S. cerevisiae SER3 gene. Nature 429: 571-574.
PMID: 15175754
PDF

Duina, A., Winston, F. 2004. Analysis of a histone H3 mutant that perturbs association of Swi/Snf with chromatin. Mol. Cell. Biol. 24: 561-572.
PMID: 14701730                        PMCID: PMC343804
PDF

Hess, D., Liu, B., Roan, N.R., Sternglanz, R., Winston, F. 2004. Spt10-dependent transcriptional activation in S. cerevisiae requires both the Spt10 acetyltransferase domain and Spt21. Mol. Cell. Biol. 24: 135-143.
PMID: 14673149                        PMCID: PMC303362
PDF

Kaplan CD, Laprade L, Winston F. 2003. Transcription elongation factors repress transcription initiation from cryptic sites. Science 301: 1096-1099.
PMID: 12934008
PDF

Martens JA, Winston F. 2002. Evidence that Swi/Snf directly represses transcription in S. cerevisiae. Genes Dev 16: 2231-6
PMID: 12208846                        PMCID: PMC186664
PDF

Hongay C, Jia N, Bard M, Winston F. 2002. Mot3 is a transcriptional repressor of ergosterol biosynthetic genes and is required for normal vacuolar function in Saccharomyces cerevisiae. EMBO 21:4114-24
PMID: 12145211                        PMCID: PMC126159
PDF

Wu PY, Winston F. 2002. Analysis of Spt7 Function in the Saccharomyces cerevisiae SAGA Coactivator Complex. Mol. Cell. Biol. 22:5367-79
PMID:12101232                        PMCID: PMC133947
PDF

Laprade L, Boyartchuk VL, Dietrich WF, Winston F. 2002. Spt3 Plays Opposite Roles in Filamentous Growth in Saccharomyces cerevisiae and Candida albicans and Is Required for C. albicans Virulence. Genetics 161:509-19
PMID: 12072450                        PMCID:  PMC1462142
PDF

Briggs SD, Bryk M, Strahl BD, Cheung WL, Davie JK, Dent SY, Winston F, Allis CD. 2001. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev. 15;15(24):3286-3295.
PMID: 11751634                        PMCID: PMC312847
PDF

Bryk M, Briggs SD, Strahl BD, Curcio MJ, Allis CD, Winston F. 2002. Evidence that Set1, a Factor Required for Methylation of Histone H3, Regulates rDNA Silencing in S. cerevisiae by a Sir2-Independent Mechanism. Curr Biol. 12:165-70.
PMID: 11818070
PDF

Larschan, E. and Winston, F. 2001. The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Genes & Dev. 15: 1946-1956.
PMID: 11485989                        PMCID: PMC312753
PDF

Zhou, H. and Winston, F. 2001. NRG1 is required for glucose repression of the SUC2 and GAL genes of Saccharomyces cerevisiae. BMC Genetics 2: 5.
PMID: 11281938                        PMCID: PMC31344
PDF

Kaplan, C.D., Morris, J.R., Wu, C.-t., and Winston, F. 2000. Spt5 and Spt6 are associated with active transcription and have characteristics of general elongation factors in Drosophila melanogaster. Genes & Dev. 14: 2623-2634.
PMID: 11040216                        PMCID: PMC316994
PDF

Lee, T. I., Causton, H. C., Holstege, F. C. P., Shen, W.-C., Hannett, N., Jennings, E. G., Winston, F., Green, M. R., and Young, R. A. 2000. Redundant roles for SAGA and TFIID in global transcription. Nature 405: 701-704.
PMID: 10864329
PDF

Pinto, I. and Winston, F. 2000. Histone H2A is required for normal centromere function in Saccharomyces cerevisiae. EMBO J. 7: 1598-1612.
PMID: 10747028                        PMCID: PMC310229
PDF

Sudarsanam, P., Iyer, V., Brown., P.O., and Winston, F. 2000. Whole-genome expression analysis of snf/swi mutants of S. cerevisiae. Proc. Natl. Acad. Sci. USA 97: 3364-3369.
PMID: 10725359                        PMCID: PMC16245
PDF

Cairns, B. R., Schlichter, A., Erdjument-Bromage, H., Tempst, P., Kornberg, R. D., and Winston, F. 1999. Two functionally distinct forms of the RSC nucleosome- remodeling complex, containing essential AT-hook, BAH, and bromodomains. Mol. Cell 4: 715-723.
PMID: 10619019
PDF

Dudley, A. M., Rougeulle, C., and Winston, F. 1999. The Spt components of SAGA facilitate TBP binding to a promoter at a post-activator- binding step in vivo. Genes & Dev. 13: 2940-2945.
PMID: 10580001                        PMCID: PMC317152
PDF

Natarajan, K., Jackson, B. M., Zhou, H., Winston, F., and Hinnebusch, A. G. 1999. Transcriptional activation by Gcn4p involves independent interactions with SWI/SNF complex and SRB/Mediator. Mol. Cell 4: 657-664.
PMID: 10549298
PDF

Sudarsanam, P., Cao, Y., Wu, L, Laurent, B. C., and Winston, F. 1999. The nucleosome remodeling complex, Snf/Swi, is required for the maintenance of transcription in vivo and is partially redundant with the histone acetyltransferase, Gcn5. EMBO J. 18: 3101- 3106.
PMID: 10357821                        PMCID: PMC1171391
PDF

Dudley, A. M., Gansheroff, L. J., and Winston, F. 1999. Specific components of the SAGA complex are required for Gcn4- and Gcr1-mediated activation of the his4-912delta promoter in S. cerevisiae. Genetics 151: 1365-1378.
PMID: 10101163                        PMCID: PMC1460567
PDF

Sterner, D. E., Grant, P.A., Roberts, S. M., Duggan, L. J., Belotserkovskaya, R., Pacella, L. A., Winston, F., Workman, J. L., and Berger, S. L. 1999. Functional organization of the yeast SAGA complex: Distinct components involved in structural integrity, nucleosome acetylation, and TBP binding. Mol. Cell. Biol. 19: 86-98.
PMID: 9858534                        PMCID: PMC83868
PDF

Cairns, B.R., Erdjument-Bromage, H., Tempst, P., Winston, F., and Kornberg, R.D. 1998. Two actin-related proteins are shared functional components of the chromatin remodeling complexes RSC and SWI/SNF. Mol. Cell 2: 639-651.
PMID: 9844636
PDF

Yu, J., Madison, J.M., Mundlos, S., Winston, F., and Olsen, B.R. 1998. Characterization of a human homologue of the S. cerevisiae transcription factor Spt3. Genomics 53: 90-96.
PMID: 9787080
PDF

Madison, J.M. and Winston, F. 1998. Identification and analysis of homologues of Saccharomyces cerevisiae Spt3 suggest conserved functional domains. Yeast 14: 409-417.
PMID: 9559549
PDF

Madison, J.M., Dudley, A.M., and Winston, F. 1998. Identification and analysis of Mot3, a zinc-finger protein that binds to the retrotransposon Ty LTR (delta) in Saccharomyces cerevisiae. Mol. Cell. Biol. 18: 1879-1890.
PMID: 9528759                        PMCID: PMC121417
PDF

Hartzog, G.A., Wada, T., Handa, H., and Winston, F. 1998. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes & Dev. 12: 357-369.
PMID: 9450930                        PMCID: PMC316481
PDF

Wada, T., Takagi, T., Yamaguchi, Y., Ferdous, A., Imai, T., Hirose, S.,Sugimoto, S., Yano, K., Hartzog, G.A., Winston, F., Buratowski, S., and Handa, H. 1998. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes & Dev. 12: 343-356.
MID: 9450929                        PMCID: PMC316480
PDF

Wu, L. and Winston, F. 1997. Evidence that Snf/Swi controls chromatin structure over both the TATA and UAS regions of the SUC2 promoter in Saccharomyces cerevisiae. Nucl. Acids. Res. 25: 4230-4234
PMID: 9336451                        PMCID: PMC147028
PDF

Roberts, S.M., and Winston, F. 1997. Essential functional interactions of SAGA, a Saccharomyces cerevisiae complex of Spt, Ada, and Gcn5 proteins, with the Snf/Swi and Srb/mediator complexes. Genetics 147: 451-465.
PMID: 9335585                        PMCID: PMC1208170
PDF

Grant, P.A., Duggan, L., Côté, J., Roberts, S.M., Brownell, J, Candau, R., Ohba, R., Owen-Hughes, T., Allis, C.D., Winston, F., Berger, S.L., and Workman, J.L. 1997. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an ADA complex and the SAGA (Spt/Ada) complex. Genes & Dev. 11: 1640-1650
PMID: 9224714
PDF

Madison, J.M., and Winston, F. 1997. Evidence that Spt3 functionally interacts with Mot1, TFIIA, and TBP to confer promoter-specific transcriptional control in Saccharomyces cerevisiae. Mol. Cell. Biol. 17: 287-295.
PMID: 8972209                        PMCID: PMC231753
PDF

Bortvin, A., and Winston, F. 1996. Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science 272: 1473-1476.
PMID: 8633238
PDF

Roberts, S.M. and Winston, F. 1996. SPT20/ADA5 encodes a novel protein functionally related to the TATA-binding protein and important for transcription in Saccharomyces cerevisiae. Mol. Cell. Biol 16: 3206-3213.
PMID: 8649431                        PMCID: PMC231314
PDF

Hartzog, G.A., Basrai, M.A., Ricupero-Hovasse, S.L., Hieter, P., and Winston, F. 1996. Identification and analysis of a functional human homologue of the SPT4 gene of Saccharomyces cerevisiae. Mol. Cell. Biol.16: 2848-2856.
PMID: 8649394                        PMCID: PMC231277
PDF

Arndt, K.M., Ricupero-Hovasse, S.L., and Winston, F. 1995. TBP mutants defective in activated transcription in vivo. EMBO J.14: 1490-1497.
PMID: 7729424                        PMCID: PMC398236
PDF

Hirschhorn, J.N., Bortvin, A.L., Ricupero-Hovasse, S., and Winston, F. 1995. A new class of histone H2A mutations in Saccharomyces cerevisiae causes specific transcriptional defects in vivo. Mol. Cell. Biol.15: 1999-2009.
PMID: 7891695                        PMCID: PMC230427
PDF

Gansheroff, L.J., Dollard, C., Tan, P., and Winston, F. 1995. The Saccharomyces cerevisiae SPT7 gene encodes a very acidic protein important for transcription in vivo. Genetics 139: 523-536.
PMID: 7713415                        PMCID: PMC1206364
PDF

Winston, F., Dollard, C., and Ricupero-Hovasse, S.L. 1995. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11: 53-55
PMID: 7762301
PDF

Dollard, C., Ricupero-Hovasse, S.L., Natsoulis, G., Boeke, J.D., and Winston, F. 1994. SPT10 and SPT21 are required for transcription of particular histone genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 14: 5223-5228.
PMID: 8035801                        PMCID: PMC359041
PDF

Eisenmann, D.M., Chapon, C. Roberts, S.M., Dollard, C. and Winston. F. 1994. The S. cerevisiae SPT8 gene encodes a very acidic protein that is functionally related to SPT3 and TATA-binding protein. Genetics 137: 647-657.
PMID: 8088510                        PMCID: PMC1206024
PDF

Arndt, K.M., Wobbe, C.R., Ricupero-Hovasse, S., Struhl, K., and Winston, F. 1994. Equivalent mutations in the two repeats of yeast TATA-binding protein confer distinct TATA- recognition specificities. Mol. Cell. Biol. 14: 3719-3728.
PMID: 8196615                        PMCID: PMC358739
PDF

Natsoulis, G., Winston, F., and Boeke, J.D. 1994. The SPT10 and SPT21 genes of Saccharomyces cerevisiae. Genetics 136: 93-105.
PMID: 8138180                        PMC1205796
PDF

Prelich, G. and Winston. F. 1993. Mutations that suppress the deletion of an upstream activating sequence in yeast: involvement of a protein kinase and histone H3 in repressing transcription in vivo. Genetics 135: 665-676.
PMID: 8293972                        PMCID: PMC1205711
PDF

Malone, E.A., Fassler, J.S., and Winston, F. 1993. Molecular and genetic characterization of SPT4, a gene important in transcription initiation in Saccharomyces cerevisiae. Mol. Gen. Genet. 237: 449-459.
PMID: 8483459
PDF

Hirschhorn, J.N., Brown, S.A., Clark, C.D., and Winston, F. 1992. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes & Dev. 6: 2288-2298.
PMID: 1459453
PDF

Happel, A.M. and Winston, F. 1992. A mutant tRNA affects delta-mediated transcription in Saccharomyces cerevisiae. Genetics 132: 361-374.
PMID: 1330824                        PMCID: PMC1205142
PDF

Swanson, M.S. and Winston, F. 1992. SPT4, SPT5, and SPT6 interactions: effects on transcription and viability in Saccharomyces cerevisiae. Genetics 132: 325-336.
PMID: 1330823                        PMC1205139
PDF

Eisenmann, D.M., Arndt, K.M., Ricupero, S.L., Rooney, J.W., and Winston, F. 1992. SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. Genes & Dev. 6: 1319-1331.
PMID: 1628834
PDF

Haynes, S.R., Dollard, C., Winston, F., Beck, S., Trowsdale, J., and Dawid, I.B. 1992. The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nuc. Acids Res. 20: 2603-2603.
PMID: 1350857                        PMC312404
PDF

Arndt, K.M., Ricupero, S.L., Eisenmann, D.M., and Winston, F. 1992. Biochemical and genetic characterization of a yeast TFIID mutant that alters transcription in vivo and DNA binding in vitro. Mol. Cell. Biol. 12: 2372-2382.
PMID: 1569955                        PMCID: PMC364409
PDF

Natsoulis, G., Dollard, C., Winston, F., and Boeke, J.D. 1991. The products of the SPT10 and SPT21 genes of Saccharomyces cerevisiae increase the amplitude of transcriptional regulation at a large number of unlinked loci. New Biologist 3: 1249-1259.
PMID: 1667480

Malone, E.A., Clark, C.D., Chiang, A., and Winston, F. 1991. Mutations in SPT16/CDC68 suppress cis- and trans-acting mutations that affect promoter function in Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 5710-5717.
PMID: 1922073                        PMCID: PMC361942
PDF

Swanson, M.S., Malone, E.A., and Winston, F. 1991. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat. Mol. Cell. Biol. 11: 3009-3019.
PMID: 1840633                        PMCID: PMC360134
PDF

Happel, A.M., Swanson, M.S., and Winston, F. 1991. The SNF2, SNF5, and SNF6 genes are required for Ty transcription in Saccharomyces cerevisiae. Genetics 128: 69-77.
PMID: 1648006                        PMCID: PMC1204454
PDF

Hoffman, C.S., and Winston, F. 1991. Glucose repression of transcription of the Schizosaccharomyces pombe fbp1 gene occurs by a cAMP signaling pathway. Genes & Dev. 5: 561-671.
PMID: 1849107
PDF

Swanson, M.S., Carlson, M., and Winston, F. 1990. SPT6, an essential gene that affects transcription in Saccharomyces cerevisiae, encodes a nuclear protein with an extremely acidic amino terminus. Mol. Cell. Biol. 10: 4935-4941.
PMID: 2201908                        PMCID: PMC361114
PDF

Fikes, J.D., Becker, D.M., Winston, F., and Guarente, L. 1990. Striking conservation of TFIID in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Nature 346: 291-294.
PMID: 2197558
PDF

Walker, J., Chen, T.A., Sterner, R., Berger, M., Winston, F. and Allfrey, V.G. 1990. Affinity chromatography of mammalian and yeast nucleosomes. Two modes of binding of transcriptionally active mammalian nucleosomes to organomercurial-agarose columns, and contrasting behavior of the active nucleosomes of yeast. J. Biol. Chem. 265: 5736-5746.
PMID: 2180934
PDF

Hoffman, C.S., and Winston, F. 1990. Isolation and characterization of mutants constitutive for expression of the fbp1 gene of Schizosaccharomyces pombe. Genetics 124: 807- 816.
PMID: 2157626                        PMCID: PMC1203973
PDF

Hoffman, C.S., and Winston, F. 1989. A transcriptionally regulated expression vector for the fission yeast, Schizosaccharomyces pombe. Gene 84: 473-479.
PMID: 2558974
PDF

Fassler, J.S., and Winston, F. 1989. The Saccharomyces cerevisiae SPT13/GAL11 gene has both positive and negative regulatory roles in transcription. Mol. Cell. Biol. 9: 5602-5609.
PMID: 2685570                        PMCID: PMC363730
PDF

Natsoulis, G., Thomas, W., Roghmann, M.-C., Winston, F. and Boeke, J. 1989. Transposition in Saccharomyces cerevisiae is nonrandom. Genetics 123: 269-279.
PMID: 2555252                        PMCID: PMC1203799
PDF

Eisenmann, D.M., Dollard, C., and Winston, F. 1989. SPT15, the gene encoding the yeast TATA-binding factor TFIID, is required for normal transcription initiation in vivo. Cell 58: 1183-1191.
PMID: 2673545
PDF

Hirschman, J.E., Durbin, K.J. and Winston, F. 1988. Genetic evidence for promoter competition in Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 4608-4615.
PMID: 2850465                        PMC365549
PDF

Hirschhorn JN, Winston F. SPT3 is required for normal levels of a-factor and alpha-factor expression in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Feb;8(2):822-827.
PMID: 3127692                        PMCID: PMC363210
PDF

Clark-Adams, C.D., Norris, D., Osley, M.A., Fassler, J.S. and Winston, F. 1988. Changes in histone gene dosage alter transcription in yeast. Genes & Dev. 2: 150-159.
PMID: 2834270
PDF

Fassler, J.S. and Winston, F. 1988. Isolation and analysis of a novel class of suppressor of Ty insertion mutations in Saccharomyces cerevisiae. Genetics 118: 203-212.
PMID: 2834263                        PMCID: PMC1203274
PDF

Winston, F., Dollard, C., Malone, E.A., Clare, J., Kapakos, J.G., Farabaugh, P. and Minehart, P.L. 1987. Three genes are required for trans-activation of Ty transcription in yeast. Genetics 115: 649-656.
PMID: 3034719                        PMCID: PMC1203097
PDF

Clark-Adams, C.D. and Winston, F. 1987. SPT6 is an essential gene required for delta-mediated transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 679-686.
PMID: 3029564                        PMCID: PMC365124
PDF

Hoffman, C.S. and Winston, F. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57: 267- 272.
PMID: 3319781
PDF

Winston, F. and Minehart, P.L. 1986. Analysis of the yeast SPT3 gene and identification of its product, a positive regulator of Ty transcription. Nucl. Acids Res. 14: 6885-6900.
PMID: 3020500                        PMCID: PMC31170
PDF

Winston, F., Durbin, K.J. and Fink, G.R. 1984. The SPT3 gene is required for normal transcription of Ty elements in S. cerevisiae. Cell 39: 675-682.
PMID: 6096019
PDF

Winston, F., Chaleff, D.T., Valent, B. and Fink, G.R. 1984. Mutations affecting Ty- mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 107: 179-197.
PMID: 6329902                        PMCID: PMC1202318
PDF

Simchen, G., Winston, F., Styles, C.A. and Fink, G.R. 1984. Ty-mediated gene expression of the LYS2 and HIS4 genes of Saccharomyces cerevisiae is controlled by the same SPT genes. Proc. Natl. Acad. Sci. USA 81: 2431-2434.
PMID: 6326126                        PMCID: PMC345074
PDF

Rose, M. and Winston, F. 1984. Identification of a Ty insertion within the coding sequence of the S. cerevisiae URA3 gene. Mol. Gen. Genet. 193: 557-560.
PMID: 6323928
PDF

Winston, F. and Botstein, D. 1981. Control of lysogenization by phage P22. II. Mutations (clyA) in the c1 gene that cause increased lysogenization. J. Mol. Biol. 152: 233-245.
PMID: 7328657
PDF

Winston, F. and Botstein, D. 1981. Control of lysogenization by phage P22. I. The P22 cro gene. J. Mol. Biol. 152: 209-232. PMID: 7328656
PDF

Winston, F., Botstein, D. and Miller, J.H. 1979. Characterization of amber and ochre suppressors in Salmonella typhimurium. J. Bact. 137: 433-43.
PMID: 368021                        PMCID: PMC218467.
PDF

REVIEWS & BOOKS

Rando, O.J. and Winston, F.  2011. Chromatin and transcription in yeast.  Genetics. 190(2):351-87.
PMID: 22345607            PMCID: PMC3276623
PDF

Johnston, M., DePellegrin Connelly, T., Marts, S., and Winston, F.  2009.  Presenting Genetics: honoring the past, embracing the future. Genetics. 183(4):1203.
PMID: 19996373            PMCID: PMC2787413
PDF

Winston, F.  2009. A transcription switch toggled by noncoding RNAs.  Proc. Natl. Acad. Sci. 106(43): 18049-18050.
PMID: 19846777            PMCID: PMC2775307
PDF

Winston F. 2008. EMS and UV mutagenesis in yeast. Curr Protoc Mol Biol. Chapter 13:Unit 13.3B.
PMID: 18425760
PDF

Winston, F.  2006.  Transcription.  In, Linder, P., Shore, D., and Hall, M.N. eds, Landmark Papers in Yeast Biology, Cold Spring Harbor Laboratory Press, pp. 67-83.
PDF

Arndt, K. and Winston, F. 2005. An unexpected role for ubiquitylation of a transcriptional activator. Cell 120: 733-734.
PMID: 15797373
PDF

Bourbon, H.M. et al.  2004. A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II.  Mol. Cell 14: 553-557.
PMID: 15175151
PDF

Martens, J.A. and Winston, F.  2003. Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Current Opinions in Genetics and Development 13: 136-142.
PMID: 12672490
PDF

Winston, F.  2002.  Yeast Genetics.  In, Lewin, B., ed. Genetics, Ergito.com
PDF

Treco, D.A. and Winston, F.  2001.  Growth and manipulation of yeast.  Curr. Protoc. Mol. Biol.  Chapter 13:Unit 13.2.
PMID: 18265098
PDF

Winston, F.  2001. Control of eukaryotic transcription elongationGenome Biology 2, 1006.1-1006.3
PMID: 11182892            PMCID: PMC138904
PDF

Winston, F. and Smith, M.M.  2000.  The Genetics of Chromatin Function.  In, Workman, J., and Elgin, S. eds, Chromatin Structure and Gene Expression, IRL Press, pp. 71-96.

Sudarsanam, P. and Winston, F. 2000. Recent advances in understanding transcriptional control by the Snf/Swi family of nucleosomes remodeling complexes. Trends in Genetics 16: 345-351.
PMID: 10904263
PDF

Winston, F. and Allis, C.D. 1999. The bromodomain: a chromatin-targeting module? Nature Structural Biology 6: 601-604.
PMID: 10404206
PDF

Winston, F. and Sudarsanam, P. 1998. The SAGA of Spt proteins and transcriptional analysis in yeast: past, present, and future. Cold Spring Harbor Symp. Quant. Biol. 63:553-61.
PMID: 10384320
PDF

Hartzog, G.A. and Winston. F. 1997. Nucleosomes and transcription: recent lessons from genetics. Current Opinions in Genetics and Development. 7(2):192-198.
PMID: 9115423
PDF

Winston, F. 1992. Analysis of SPT Genes: A Genetic Approach Towards Analysis of TFIID, Histones and Other Transcription Factors of Yeast. In, McKnight, S.L., and Yamamoto, K.R. eds., Transcriptional Regulation, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 1271-1293.

Winston, F. and Carlson, M. 1992. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends in Genetics. 8(11):387-391.
PMID: 1332230
PDF

Rose, M.D., Winston, F., and Hieter, P. 1990. Laboratory Course Manual for Methods in Yeast Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Winston, F. 1990. Yeast as a model eukaryotic cell. In, Davis, B.D., Dulbecco, R., Eisen, H.N. and Ginsberg, H. eds., Microbiology, fourth edition, J.B. Lippincott, Philadelphia, pp 229-236.

Winston, F. 1988. Transcriptional regulation of Ty elements in Saccharomyces cerevisiae. In: Liebowitz, M.J. and Koltin, Y., eds., Viruses of Fungi and Simple Eukaryotes, Marcel Dekker, New York, pp 41-61.

Winston, F. Genes that affect Ty-mediated gene expression in yeast. 1988. In: Weinstein, I.B., McDonald, J.F., and Lambert, M.E., eds., Banbury Report 30: Eukaryotic Transposable Elements as Mutagenic Agents. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 145 – 153.

Winston, F., Chumley, F.G. and Fink, G.R. 1983. Eviction and transplacement of mutant genes in yeast. In: Wu, R., Grossman, L. and Moldave, K. (eds.), Methods in Enzymology: Recombinant DNA, Part B. New York and London, Academic Press, 101: 211-228.
PMID: 6310325
PDF