Gopalakrishnan R., Marr S.K., Kingston R.E., Winston F.M.

A conserved genetic interaction between Spt6 and Set2 regulates H3K36 methylation.

Nucleic Acids Res. 2019 May 7; 47(8):3888-3903.

PMID:  30793188



Doris S.M., Chuang J., Viktorovskaya O., Murawska M., Spatt D., Churchman L.S., Winston F.M.

Spt6 Is Required for the Fidelity of Promoter Selection.

Molecular Cell. 2018 November; 72(4): 687-699.

PMID:  30318445                       PMCID:   PMC6239972




Shetty A., Kallgren S.P., Demel C., Maier K.C., Spatt D., Alver B.H., Cramer, P., Park P.J., Winston F.M.

Spt5 Plays Vital Roles in the Control of Sense and Antisense Transcription Elongation.

Molecular Cell. 2017 March; 66: 77-88.

PMID:  28366642                       PMCID:  PMC5394798




Reavy C.T., Hickman M.J., Dobi K.C., Winston F.M.

Analysis of Polygenic Mutants Suggests a Role for Mediator in Regulating Transcriptional Activation Distance in Saccharomyces cerevisiae.

Genetics. 2015 October; 201: 599-612.

PMID: 17526727                       PMCID: PMC1952096


DeGennaro C.M., Alver B.H., Marguerat S., Stepanova E., Davis C.P., Bähler J., Park P.J., Winston F.M.

Spt6 regulates intragenic and antisense transcription, nucleosome positioning, and histone modifications genome-wide in fission yeast.

Mol Cell Biol. 2013 Dec; 33(24): 4779-4792.

PMID: 24100010                       PMCID: PMC3889546


Neumuller R.A., Gross T., Samsonova A.A., Venayagam A., Buckner M., Founk K., Hu Y., Sharifpoor S., Rosebrock A.P., Andrews B., Winston F.M., and Perrimon N.

Conserved regulators of nucleolar size revealed by global phenotypic analyses.

Sci Signal. 2013 August; 6(289):ra70.

PMID: 23962978                       PMCID:  PMC3964804


Chang J., and Winston F.M.

Cell-Cycle Perturbations Suppress the Slow-Growth Defect of spt10∆ Mutants in Saccharomyces cerevisiae.

Genes, Genomes and Genetics. 2013 March; 3(3):573-83.

PMID: 23450643                       PMCID:  PMC3583463


Ahn S., Spatt D., Winston F.M.

The Schizosaccharomyces pombe inv1+ Regulatory Region Is Unusually Large and Contains Redundant cis-Acting Elements That Function in a SAGA- and Swi/Snf-Dependent Fashion.

Eukaryot Cell. 2012 June; 11(8): 1067-1074.

PMID: 22707486                       PMCID:  PMC3416058


Kiely C., Marguerat S., Garcia J.F., Madhani H.D., Bähler J., Winston F.M.

Spt6 is required for heterochromatic silencing in the fission yeast Schizosaccharomyces pombe.

Mol Cell Biol. 2011 August; 31: 4193-4204.

PMID: 21844224                        PMCID:  PMC3187285


Kloimwieder A. and Winston F.M.

A screen for germination mutants in Saccharomyces cerevisiae.

G3: Genes, Genomes, Genetics. 2011; 1(2):143-149.

PMID: 22384326                        PMCID:  PMC3276131


Helmlinger D., Marguerat S., Villén J., Swaney D.L., Gygi S.P., Bähler, J., and Winston, F.M.

Tra1 has specific regulatory roles, rather than global functions, within the SAGA coactivator complex.

EMBO J., 2011 June; 30(14):2843-2852.

PMID: 21642955                        PMCID: PMC3160243


Hickman, M.J., Spatt, D., and Winston, F.M.

The Hog1 mitogen-activated protein kinase mediates a hypoxic response in Saccharomyces cerevisiae.

Genetics.  2011; 188(2):325-338.

PMID: 21467572                        PMCID: PMC3122313


Ivanovska I., Jacques P.E., Rando O.J., Robert F., Winston F.M.

Control of chromatin structure by Spt6: different consequences in coding and regulatory regions.

Mol Cell Biol. 2011;  31(3):531-54.

PMID: 21098123                        PMCID: PMC3028613


Chang J.S., Winston F.M.

Spt10 and Spt21 are required for transcriptional silencing in Saccharomyces cerevisiae.

Eukaryotic Cell. 2011; 10(1):118-129.

PMID: 21057056                        PMCID: PMC3019801


Diebold M.L., Koch M., Loeliger E., Cura V., Winston F.M., Cavarelli J., Romier C.

The structure of an Iws1/Spt6 complex reveals an interaction domain conserved in TFIIS, Elongin A and Med26. EMBO. 2010; 29: 3979 - 3991.

PMID: 21057455                        PMCID: PMC3020637


Diebold M.L., Loeliger E., Koch M., Winston F.M., Cavarelli J., Romier C.

Noncanonical tandem SH2 enables interaction of elongation factor Spt6 with RNA polymerase II.

J Biol Chem. 2010; 285(49):38389-38398.

PMID: 20926373                        PMCID: PMC2992272


Libuda D. and Winston F.M.

Alterations in DNA replication and histone levels promote histone gene amplification in Saccharomyces cerevisiae. Genetics. 2010; 184(4):985-997.

PMID: 20139344                        PMCID: PMC2865932


Helmlinger D., Marguerat S., Villén J., Gygi S.P., Bähler J., and Winston F.M.

The S. pombe SAGA complex controls the switch from proliferation to sexual differentiation through the opposing roles of its subunits Gcn5 and Spt8.

Genes Dev. 2008; 22: 3184-3195.

PMID: 19056896                        PMCID: PMC2593614


Cheung V., Chua G., Batada N.N., Landry C.R., Michnick S.W., Hughes T.R., and Winston, F.M. 2008.

Chromatin- and Transcription-Related Factors Repress Transcription from within Coding Regions throughout the Saccharomyces cerevisiae Genome.

PLoS Biol. 2008; 6: e277.

PMID: 18998772                        PMCID: PMC2581627


Monahan B.J., Villén J., Marguerat S., Bähler J., Gygi S.P., and Winston F.M.

Fission yeast SWI/SNF and RSC complexes show compositional and functional differences from budding yeast.

Nat Struct Mol Biol. 2008; 15, 873-880.

PMID: 18622392                        PMCID: PMC2559950


Zhang L., Fletcher A.G., Cheung V., Winston F.M., Stargell, L.A.

Spn1 regulates the recruitment of Spt6 and the Swi/Snf complex during transcriptional activation by RNA polymerase II.

Mol Cell Biol. 2008 Feb; 28(4):1393-1403.

PMID: 18086892                        PMCID: PMC2258746


Laprade, L., Rose, D., and Winston, F.M.

Characterization of new Spt3 and TBP mutants of Saccharomyces cerevisiae: Spt3-TBP allele-specific interactions and bypass of Spt8.

Genetics. 2007; 177: 2007-2017.

PMID: 18073420                        PMCID: PMC2219495


Hickman, M.J. and Winston, F.M.

Heme levels switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor.

Mol. Cell. Biol. 2007; 27, 7414-7424.

PMID: 17785431                        PMCID: PMC2169065


Duina, A.A., Rufiange, A., Bracey, J., Hall, J., Nourani, A., and Winston, F.M.

Evidence that the localization of the elongation factor Spt16 across transcribed genes is dependent upon histone H3 integrity in Saccharomyces cerevisiae.

Genetics. 2007; 177(1):101-112.

PMID: 17603125                        PMCID: PMC2013732



Dobi, K.C., and Winston, F.M.

Analysis of Transcriptional Activation at a Distance in Saccharomyces cerevisiae.

Mol. Cell. Biol. 2007; 27: 5575-5586.

PMID: 17526727                        PMCID: PMC1952096



Libuda, D.E., and Winston, F.

Amplification of histone genes by circular chromosome formation in Saccharomyces cerevisiae.

Nature. 2006; 443, 1003-1007.

PMID: 17066037                        PMCID: PMC3365550



Nourani, A., Robert, F., and Winston, F.M.

Evidence that Spt2/Sin1, and HMG-like factor, plays roles in transcription elongation, chromatin structure, and genome stability in S. cerevisiae.

Mol. Cell. Biol. 2006; 26, 1496-1509.

PMID: 16449659                        PMCID: PMC1367203



Martens, J.A., Wu, P.-Y.J., and Winston, F.M.

Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae.

Genes & Dev. 2005; 19, 2695-2704.

PMID: 16291644                        PMCID: PMC1283962



Prather, D.M., Krogran, N.J., Emili, A., Greenblatt, J.F., and Winston, F..

Identification and characterization of Elf1, a conserved transcription elongation factor in S. cerevisiae.

Mol. Cell. Biol. 2005; 25, 10122-10135.

PMID:16260625                        PMCID: PMC1280281



Prather, D.M., Larschan, E., and Winston, F.M.

Evidence that the elongation factor TFIIS plays a role in transcription initiation at GAL1 in S. cerevisiae.

Mol. Cell. Biol. 2005; 25, 2650-2659.

PMID: 15767671                        PMCID: PMC1061654



Hess, D. and Winston, F.M.

Evidence that Spt10 and Spt21 of S. cerevisiae play distinct roles in vivo and functionally interact with MBF, SBF, and Snf1.

Genetics. 2005; 170, 87-94.

PMID: 15744051                        PMCID: PMC1449726



Larschan E. and Winston F.M.

The Saccharomyces cerevisiae Srb8-Srb11 complex functions with the SAGA complex during Gal4-activated transcription.

Mol Cell Biol. 2005;  25:114-23.

PMID: 15601835                        PMCID: PMC538787



Kaplan, C. D., Holland, M. J., Winston, F. 2005.

Interaction between transcription elongation factors and mRNA 3'-end formation at the Saccharomyces cerevisiae GAL10-GAL7 locus.

J. Biol. Chem. 2005; 14;280(2):913-922.

PMID: 15531585



Dror, V. and Winston, F.

The Swi/Snf chromatin remodeling complex is required for rDNA and telomeric silencing in Saccharomyces cerevisiae. Mol. Cell. Biol.  2004;  24: 8227-8235.

PMID: 15340082                        PMCID: PMC515061



Wu. P.-Y. J., Ruhlman, C., Winston, F., and Schultz, P.

Molecular architecture of the S. cerevisiae SAGA complex.

Mol. Cell. 2004; 15: 199-208.

PMID: 15260971



Martens, J.A., Laprade, L., and Winston, F. 2004. Intergenic transcription is required to repress the S. cerevisiae SER3 gene. Nature 429: 571-574.

PMID: 15175754



Duina, A., Winston, F. 2004. Analysis of a histone H3 mutant that perturbs association of Swi/Snf with chromatin. Mol. Cell. Biol. 24: 561-572.

PMID: 14701730                        PMCID: PMC343804



Hess, D., Liu, B., Roan, N.R., Sternglanz, R., Winston, F. 2004. Spt10-dependent transcriptional activation in S. cerevisiae requires both the Spt10 acetyltransferase domain and Spt21. Mol. Cell. Biol. 24: 135-143.

PMID: 14673149                        PMCID: PMC303362



Kaplan CD, Laprade L, Winston F. 2003. Transcription elongation factors repress transcription initiation from cryptic sites. Science 301: 1096-1099.

PMID: 12934008



Martens JA, Winston F. 2002. Evidence that Swi/Snf directly represses transcription in S. cerevisiae. Genes Dev 16: 2231-6

PMID: 12208846                        PMCID: PMC186664



Hongay C, Jia N, Bard M, Winston F. 2002. Mot3 is a transcriptional repressor of ergosterol biosynthetic genes and is required for normal vacuolar function in Saccharomyces cerevisiae. EMBO 21:4114-24

PMID: 12145211                        PMCID: PMC126159



Wu PY, Winston F. 2002. Analysis of Spt7 Function in the Saccharomyces cerevisiae SAGA Coactivator Complex. Mol Cell Biol 22:5367-79

PMID:12101232                        PMCID: PMC133947



Laprade L, Boyartchuk VL, Dietrich WF, Winston F. 2002. Spt3 Plays Opposite Roles in Filamentous Growth in Saccharomyces cerevisiae and Candida albicans and Is Required for C. albicans Virulence. Genetics 161:509-19

PMID: 12072450                        PMCID:  PMC1462142



Briggs SD, Bryk M, Strahl BD, Cheung WL, Davie JK, Dent SY, Winston F, Allis CD. 2001. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev. 15;15(24):3286-3295.

PMID: 11751634                        PMCID: PMC312847



Bryk M, Briggs SD, Strahl BD, Curcio MJ, Allis CD, Winston F. 2002. Evidence that Set1, a Factor Required for Methylation of Histone H3, Regulates rDNA Silencing in S. cerevisiae by a Sir2-Independent Mechanism. Curr Biol. 12:165-70.

PMID: 11818070



Larschan, E. and Winston, F. 2001. The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Genes & Dev. 15: 1946-1956.

PMID: 11485989                        PMCID: PMC312753



Zhou, H. and Winston, F. 2001. NRG1 is required for glucose repression of the SUC2 and GAL genes of Saccharomyces cerevisiae. BMC Genetics 2: 5.

PMID: 11281938                        PMCID: PMC31344



Kaplan, C.D., Morris, J.R., Wu, C.-t., and Winston, F. 2000. Spt5 and Spt6 are associated with active transcription and have characteristics of general elongation factors in Drosophila melanogaster. Genes & Dev. 14: 2623-2634.

PMID: 11040216                        PMCID: PMC316994



Lee, T. I., Causton, H. C., Holstege, F. C. P., Shen, W.-C., Hannett, N., Jennings, E. G., Winston, F., Green, M. R., and Young, R. A. 2000. Redundant roles for SAGA and TFIID in global transcription. Nature 405: 701-704.

PMID: 10864329



Pinto, I. and Winston, F. 2000. Histone H2A is required for normal centromere function in Saccharomyces cerevisiae. EMBO J. 7: 1598-1612.

PMID: 10747028                        PMCID: PMC310229



Sudarsanam, P., Iyer, V., Brown., P.O., and Winston, F. 2000. Whole-genome expression analysis of snf/swi mutants of S. cerevisiae. Proc. Natl. Acad. Sci. USA 97: 3364-3369.

PMID: 10725359                        PMCID: PMC16245



Cairns, B. R., Schlichter, A., Erdjument-Bromage, H., Tempst, P., Kornberg, R. D., and Winston, F. 1999. Two functionally distinct forms of the RSC nucleosome- remodeling complex, containing essential AT-hook, BAH, and bromodomains. Mol. Cell 4: 715-723.

PMID: 10619019



Dudley, A. M., Rougeulle, C., and Winston, F. 1999. The Spt components of SAGA facilitate TBP binding to a promoter at a post-activator- binding step in vivo. Genes & Dev. 13: 2940-2945.

PMID: 10580001                        PMCID: PMC317152



Natarajan, K., Jackson, B. M., Zhou, H., Winston, F., and Hinnebusch, A. G. 1999. Transcriptional activation by Gcn4p involves independent interactions with SWI/SNF complex and SRB/Mediator. Mol. Cell 4: 657-664.

PMID: 10549298



Sudarsanam, P., Cao, Y., Wu, L, Laurent, B. C., and Winston, F. 1999. The nucleosome remodeling complex, Snf/Swi, is required for the maintenance of transcription in vivo and is partially redundant with the histone acetyltransferase, Gcn5. EMBO J. 18: 3101- 3106.

PMID: 10357821                        PMCID: PMC1171391



Dudley, A. M., Gansheroff, L. J., and Winston, F. 1999. Specific components of the SAGA complex are required for Gcn4- and Gcr1-mediated activation of the his4-912delta promoter in S. cerevisiae. Genetics 151: 1365-1378.

PMID: 10101163                        PMCID: PMC1460567



Sterner, D. E., Grant, P.A., Roberts, S. M., Duggan, L. J., Belotserkovskaya, R., Pacella, L. A., Winston, F., Workman, J. L., and Berger, S. L. 1999. Functional organization of the yeast SAGA complex: Distinct components involved in structural integrity, nucleosome acetylation, and TBP binding. Mol. Cell. Biol. 19: 86-98.

PMID: 9858534                        PMCID: PMC83868



Cairns, B.R., Erdjument-Bromage, H., Tempst, P., Winston, F., and Kornberg, R.D. 1998. Two actin-related proteins are shared functional components of the chromatin remodeling complexes RSC and SWI/SNF. Mol. Cell 2: 639-651.

PMID: 9844636



Yu, J., Madison, J.M., Mundlos, S., Winston, F., and Olsen, B.R. 1998. Characterization of a human homologue of the S. cerevisiae transcription factor Spt3. Genomics 53: 90-96.

PMID: 9787080



Madison, J.M. and Winston, F. 1998. Identification and analysis of homologues of Saccharomyces cerevisiae Spt3 suggest conserved functional domains. Yeast 14: 409-417.

PMID: 9559549



Madison, J.M., Dudley, A.M., and Winston, F. 1998. Identification and analysis of Mot3, a zinc-finger protein that binds to the retrotransposon Ty LTR (delta) in Saccharomyces cerevisiae. Mol. Cell. Biol. 18: 1879-1890.

PMID: 9528759                        PMCID: PMC121417



Hartzog, G.A., Wada, T., Handa, H., and Winston, F. 1998. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes & Dev. 12: 357-369.

PMID: 9450930                        PMCID: PMC316481



Wada, T., Takagi, T., Yamaguchi, Y., Ferdous, A., Imai, T., Hirose, S.,Sugimoto, S., Yano, K., Hartzog, G.A., Winston, F., Buratowski, S., and Handa, H. 1998. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes & Dev. 12: 343-356.

PMID: 9450929                        PMCID: PMC316480



Wu, L. and Winston, F. 1997. Evidence that Snf/Swi controls chromatin structure over both the TATA and UAS regions of the SUC2 promoter in Saccharomyces cerevisiae, Nucl. Acids. Res. 25: 4230-4234

PMID: 9336451                        PMCID: PMC147028



Roberts, S.M., and Winston, F. 1997. Essential functional interactions of SAGA, a Saccharomyces cerevisiae complex of Spt, Ada, and Gcn5 proteins, with the Snf/Swi and Srb/mediator complexes. Genetics 147: 451-465.

PMID: 9335585                        PMCID: PMC1208170



Grant, P.A., Duggan, L., Côté, J., Roberts, S.M., Brownell, J, Candau, R., Ohba, R., Owen-Hughes, T., Allis, C.D., Winston, F., Berger, S.L., and Workman, J.L. 1997. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an ADA complex and the SAGA (Spt/Ada) complex. Genes & Dev. 11: 1640-1650

PMID: 9224714



Madison, J.M., and Winston, F. 1997. Evidence that Spt3 functionally interacts with Mot1, TFIIA, and TBP to confer promoter-specific transcriptional control in Saccharomyces cerevisiae. Mol. Cell. Biol. 17: 287-295.

PMID: 8972209                        PMCID: PMC231753



Bortvin, A., and Winston, F. 1996. Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science 272: 1473-1476.

PMID: 8633238



Roberts, S.M. and Winston, F. 1996. SPT20/ADA5 encodes a novel protein functionally related to the TATA-binding protein and important for transcription in Saccharomyces cerevisiae. Mol. Cell. Biol 16: 3206-3213.

PMID: 8649431                        PMCID: PMC231314



Hartzog, G.A., Basrai, M.A., Ricupero-Hovasse, S.L., Hieter, P., and Winston, F. 1996. Identification and analysis of a functional human homologue of the SPT4 gene of Saccharomyces cerevisiae. Mol. Cell. Biol.16: 2848-2856.

PMID: 8649394                        PMCID: PMC231277



Arndt, K.M., Ricupero-Hovasse, S.L., and Winston, F. 1995. TBP mutants defective in activated transcription in vivo. EMBO J.14: 1490-1497.

PMID: 7729424                        PMCID: PMC398236



Hirschhorn, J.N., Bortvin, A.L., Ricupero-Hovasse, S., and Winston, F. 1995. A new class of histone H2A mutations in Saccharomyces cerevisiae causes specific transcriptional defects in vivo. Mol. Cell. Biol.15: 1999-2009.

PMID: 7891695                        PMCID: PMC230427



Gansheroff, L.J., Dollard, C., Tan, P., and Winston, F. 1995. The Saccharomyces cerevisiae SPT7 gene encodes a very acidic protein important for transcription in vivo. Genetics 139: 523-536.

PMID: 7713415                        PMCID: PMC1206364



Winston, F., Dollard, C., and Ricupero-Hovasse, S.L. 1995. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11: 53-55

PMID: 7762301



Dollard, C., Ricupero-Hovasse, S.L., Natsoulis, G., Boeke, J.D., and Winston, F. 1994. SPT10 and SPT21 are required for transcription of particular histone genes in Saccharomyces cerevisiae. Mol. Cell. Biol.14: 5223-5228.

PMID: 8035801                        PMCID: PMC359041



Eisenmann, D.M., Chapon, C. Roberts, S.M., Dollard, C. and Winston. F. 1994. The S. cerevisiae SPT8 gene encodes a very acidic protein that is functionally related to SPT3 and TATA-binding protein. Genetics 137: 647-657.

PMID: 8088510                        PMCID: PMC1206024



Arndt, K.M., Wobbe, C.R., Ricupero-Hovasse, S., Struhl, K., and Winston, F. 1994. Equivalent mutations in the two repeats of yeast TATA-binding protein confer distinct TATA- recognition specificities. Mol. Cell. Biol. 14: 3719-3728.

PMID: 8196615                        PMCID: PMC358739



Natsoulis, G., Winston, F., and Boeke, J.D. 1994. The SPT10 and SPT21 genes of Saccharomyces cerevisiae. Genetics 136: 93-105.

PMID: 8138180                        PMC1205796



Prelich, G. and Winston. F. 1993. Mutations that suppress the deletion of an upstream activating sequence in yeast: involvement of a protein kinase and histone H3 in repressing transcription in vivo. Genetics 135: 665-676.

PMID: 8293972                        PMCID: PMC1205711



Malone, E.A., Fassler, J.S., and Winston, F. 1993. Molecular and genetic characterization of SPT4, a gene important in transcription initiation in Saccharomyces cerevisiae. Mol. Gen. Genet. 237: 449-459.

PMID: 8483459



Hirschhorn, J.N., Brown, S.A., Clark, C.D., and Winston, F. 1992. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes & Dev. 6: 2288-2298.

PMID: 1459453



Happel, A.M. and Winston, F. 1992. A mutant tRNA affects delta-mediated transcription in Saccharomyces cerevisiae. Genetics 132: 361-374.

PMID: 1330824                        PMCID: PMC1205142



Swanson, M.S. and Winston, F. 1992. SPT4, SPT5, and SPT6 interactions: effects on transcription and viability in Saccharomyces cerevisiae. Genetics 132: 325-336.

PMID: 1330823                        PMC1205139



Eisenmann, D.M., Arndt, K.M., Ricupero, S.L., Rooney, J.W., and Winston, F. 1992. SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. Genes & Dev. 6: 1319-1331.

PMID: 1628834



Haynes, S.R., Dollard, C., Winston, F., Beck, S., Trowsdale, J., and Dawid, I.B. 1992. The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nuc. Acids Res. 20: 2603-2603.

PMID: 1350857                        PMC312404



Arndt, K.M., Ricupero, S.L., Eisenmann, D.M., and Winston, F. 1992. Biochemical and genetic characterization of a yeast TFIID mutant that alters transcription in vivo and DNA binding in vitro. Mol. Cell. Biol. 12: 2372-2382.

PMID: 1569955                        PMCID: PMC364409



Natsoulis, G., Dollard, C., Winston, F., and Boeke, J.D. 1991. The products of the SPT10 and SPT21 genes of Saccharomyces cerevisiae increase the amplitude of transcriptional regulation at a large number of unlinked loci. New Biologist 3: 1249-1259.

PMID: 1667480


Malone, E.A., Clark, C.D., Chiang, A., and Winston, F. 1991. Mutations in SPT16/CDC68 suppress cis- and trans-acting mutations that affect promoter function in Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 5710-5717.

PMID: 1922073                        PMCID: PMC361942



Swanson, M.S., Malone, E.A., and Winston, F. 1991. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat. Mol. Cell. Biol. 11: 3009-3019.

PMID: 1840633                        PMCID: PMC360134



Happel, A.M., Swanson, M.S., and Winston, F. 1991. The SNF2, SNF5, and SNF6 genes are required for Ty transcription in Saccharomyces cerevisiae. Genetics 128: 69-77.

PMID: 1648006                        PMCID: PMC1204454



Hoffman, C.S., and Winston, F. 1991. Glucose repression of transcription of the Schizosaccharomyces pombe fbp1 gene occurs by a cAMP signaling pathway. Genes & Dev. 5: 561-671.

PMID: 1849107



Swanson, M.S., Carlson, M., and Winston, F. 1990. SPT6, an essential gene that affects transcription in Saccharomyces cerevisiae, encodes a nuclear protein with an extremely acidic amino terminus. Mol. Cell. Biol. 10: 4935-4941.

PMID: 2201908                        PMCID: PMC361114



Fikes, J.D., Becker, D.M., Winston, F., and Guarente, L. 1990. Striking conservation of TFIID in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Nature 346: 291-294.

PMID: 2197558



Walker, J., Chen, T.A., Sterner, R., Berger, M., Winston, F. and Allfrey, V.G. 1990. Affinity chromatography of mammalian and yeast nucleosomes. Two modes of binding of transcriptionally active mammalian nucleosomes to organomercurial-agarose columns, and contrasting behavior of the active nucleosomes of yeast. J. Biol. Chem. 265: 5736-5746.

PMID: 2180934



Hoffman, C.S., and Winston, F. 1990. Isolation and characterization of mutants constitutive for expression of the fbp1 gene of Schizosaccharomyces pombe. Genetics 124: 807- 816.

PMID: 2157626                        PMCID: PMC1203973



Hoffman, C.S., and Winston, F. 1989. A transcriptionally regulated expression vector for the fission yeast, Schizosaccharomyces pombe. Gene 84: 473-479.

PMID: 2558974



Fassler, J.S., and Winston, F. 1989. The Saccharomyces cerevisiae SPT13/GAL11 gene has both positive and negative regulatory roles in transcription. Mol. Cell. Biol. 9: 5602-5609.

PMID: 2685570                        PMCID: PMC363730



Natsoulis, G., Thomas, W., Roghmann, M.-C., Winston, F. and Boeke, J. 1989. Transposition in Saccharomyces cerevisiae is nonrandom. Genetics 123: 269-279.

PMID: 2555252                        PMCID: PMC1203799



Eisenmann, D.M., Dollard, C., and Winston, F. 1989. SPT15, the gene encoding the yeast TATA-binding factor TFIID, is required for normal transcription initiation in vivo. Cell 58: 1183-1191.

PMID: 2673545



Hirschman, J.E., Durbin, K.J. and Winston, F. 1988. Genetic evidence for promoter competition in Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 4608-4615.

PMID: 2850465                        PMC365549



Hirschhorn JN, Winston F. SPT3 is required for normal levels of a-factor and alpha-factor expression in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Feb;8(2):822-827.

PMID: 3127692                        PMCID: PMC363210



Clark-Adams, C.D., Norris, D., Osley, M.A., Fassler, J.S. and Winston, F. 1988. Changes in histone gene dosage alter transcription in yeast. Genes & Dev. 2: 150-159.

PMID: 2834270



Fassler, J.S. and Winston, F. 1988. Isolation and analysis of a novel class of suppressor of Ty insertion mutations in Saccharomyces cerevisiae. Genetics 118: 203-212.

PMID: 2834263                        PMCID: PMC1203274



Winston, F., Dollard, C., Malone, E.A., Clare, J., Kapakos, J.G., Farabaugh, P. and Minehart, P.L. 1987. Three genes are required for trans-activation of Ty transcription in yeast. Genetics 115: 649-656.

PMID: 3034719                        PMCID: PMC1203097



Clark-Adams, C.D. and Winston, F. 1987. SPT6 is an essential gene required for delta-mediated transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 679-686.

PMID: 3029564                        PMCID: PMC365124



Hoffman, C.S. and Winston, F. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57: 267- 272.

PMID: 3319781



Winston, F. and Minehart, P.L. 1986. Analysis of the yeast SPT3 gene and identification of its product, a positive regulator of Ty transcription. Nucl. Acids Res. 14: 6885-6900.

PMID: 3020500                        PMCID: PMC31170



Winston, F., Durbin, K.J. and Fink, G.R. 1984. The SPT3 gene is required for normal transcription of Ty elements in S. cerevisiae. Cell 39: 675-682.

PMID: 6096019



Winston, F., Chaleff, D.T., Valent, B. and Fink, G.R. 1984. Mutations affecting Ty- mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 107: 179-197.

PMID: 6329902                        PMCID: PMC1202318



Simchen, G., Winston, F., Styles, C.A. and Fink, G.R. 1984. Ty-mediated gene expression of the LYS2 and HIS4 genes of Saccharomyces cerevisiae is controlled by the same SPT genes.

Proc. Natl. Acad. Sci. USA 81: 2431-2434.

PMID: 6326126                        PMCID: PMC345074



Rose, M. and Winston, F. 1984. Identification of a Ty insertion within the coding sequence of the S. cerevisiae URA3 gene. Mol. Gen. Genet. 193: 557-560.

PMID: 6323928



Winston, F. and Botstein, D. 1981. Control of lysogenization by phage P22. II. Mutations (clyA) in the c1 gene that cause increased lysogenization. J. Mol. Biol. 152: 233-245.

PMID: 7328657



Winston, F. and Botstein, D. 1981. Control of lysogenization by phage P22. I. The P22 cro gene.

J. Mol. Biol. 152: 209-232.

PMID: 7328656



Winston, F., Botstein, D. and Miller, J.H. 1979. Characterization of amber and ochre suppressors in Salmonella typhimurium. J. Bact. 137: 433-43.

PMID: 368021                        PMCID: PMC218467.



Reviews and books

Rando, O.J. and Winston, F.  2011. Chromatin and transcription in yeast.  Genetics. 190(2):351-87.

PMID: 22345607            PMCID: PMC3276623



Johnston, M., DePellegrin Connelly, T., Marts, S., and Winston, F.  2009.  Presenting Genetics: honoring the past, embracing the future.  Genetics. 183(4):1203.

PMID: 19996373            PMCID: PMC2787413



Winston, F.  2009.  A transcription switch toggled by noncoding RNAs.  Proc. Natl. Acad. Sci. 106(43): 18049-18050.

PMID: 19846777            PMCID: PMC2775307



Winston F. 2008. EMS and UV mutagenesis in yeast. Curr Protoc Mol Biol. Chapter 13:Unit 13.3B.

PMID: 18425760



Winston, F.  2006.  Transcription.  In, Linder, P., Shore, D., and Hall, M.N. eds, Landmark Papers in Yeast Biology, Cold Spring Harbor Laboratory Press, pp. 67-83.



Arndt, K. and Winston, F.  2005.  An unexpected role for ubiquitylation of a transcriptional activator.  Cell 120: 733-734.

PMID: 15797373



Bourbon, H.M. et al.  2004.  A unified nomenclature for protein subunits of mediator complexes linking transcritional regulators to RNA polymerase II.  Mol. Cell 14: 553-557.

PMID: 15175151



Martens, J.A. and Winston, F.  2003.  Recent advances in understanding chromatin remodeling by Swi/Snf complexes.  Current Opinions in Genetics and Development 13: 136-142.

PMID: 12672490



Winston, F.  2002.  Yeast Genetics.  In, Lewin, B., ed. Genetics, Ergito.com



Treco, D.A. and Winston, F.  2001.  Growth and manipulation of yeast.  Curr. Protoc. Mol. Biol.  Chapter 13:Unit13.2.

PMID: 18265098



Winston, F.  2001.  Control of eukaryotic transcription elongation.  Genome Biology 2, 1006.1-1006.3

PMID: 11182892            PMCID: PMC138904



Winston, F. and Smith, M.M.  2000.  The Genetics of Chromatin Function.  In, Workman, J., and Elgin, S. eds, Chromatin Structure and Gene Expression, IRL Press, pp. 71-96.


Sudarsanam, P. and Winston, F. 2000. Recent advances in understanding transcriptional control by the Snf/Swi family of nucleosomes remodeling complexes. Trends in Genetics 16: 345-351.

PMID: 10904263



Winston, F. and Allis, C.D. 1999. The bromodomain: a chromatin-targeting module? Nature Structural Biology 6: 601-604.

PMID: 10404206



Winston, F. and Sudarsanam, P. 1998. The SAGA of Spt proteins and transcriptional analysis in yeast: past, present, and future. Cold Spring Harbor Symp. Quant. Biol. 63:553-61.

PMID: 10384320



Hartzog, G.A. and Winston. F. 1997. Nucleosomes and transcription: recent lessons from genetics. Current Opinions in Genetics and Development. 7(2):192-198.

PMID: 9115423



Winston, F. 1992. Analysis of SPT Genes: A Genetic Approach Towards Analysis of TFIID, Histones and Other Transcription Factors of Yeast. In, McKnight, S.L., and Yamamoto, K.R. eds., Transcriptional Regulation, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 1271-1293.


Winston, F. and Carlson, M. 1992. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends in Genetics. 8(11):387-391.

PMID: 1332230



Rose, M.D., Winston, F., and Hieter, P. 1990. Laboratory Course Manual for Methods in Yeast Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.


Winston, F. 1990. Yeast as a model eukaryotic cell. In, Davis, B.D., Dulbecco, R., Eisen, H.N. and Ginsberg, H. eds., Microbiology, fourth edition, J.B. Lippincott, Philadelphia, pp 229-236.


Winston, F. 1988. Transcriptional regulation of Ty elements in Saccharomyces cerevisiae. In: Liebowitz, M.J. and Koltin, Y., eds., Viruses of Fungi and Simple Eukaryotes, Marcel Dekker, New York, pp 41-61.


Winston, F. Genes that affect Ty-mediated gene expression in yeast. 1988. In: Weinstein, I.B., McDonald, J.F., and Lambert, M.E., eds., Banbury Report 30: Eukaryotic Transposable Elements as Mutagenic Agents. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 145 - 153.


Winston, F., Chumley, F.G. and Fink, G.R. 1983. Eviction and transplacement of mutant genes in yeast. In: Wu, R., Grossman, L. and Moldave, K. (eds.), Methods in Enzymology: Recombinant DNA, Part B. New York and London, Academic Press, 101: 211-228.

PMID: 6310325